If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8b^2+16b-42=0
a = 8; b = 16; c = -42;
Δ = b2-4ac
Δ = 162-4·8·(-42)
Δ = 1600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1600}=40$$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(16)-40}{2*8}=\frac{-56}{16} =-3+1/2 $$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(16)+40}{2*8}=\frac{24}{16} =1+1/2 $
| 971x-2x^2=5000+20x+x^2 | | 2(y+8)+8y=26 | | 6x+15=3(7)-3 | | 2x=(3x-5)=90 | | 5x+11=20x–64 | | 3x+²=17 | | x-2/5x-1/3x=32 | | 7x^2+19x=80 | | 3×+5y=45 | | 6x^2+12x+63=0 | | v^2-8v+45=0 | | -77=9n-51 | | 3x–1=8 | | x+(10/x)=6 | | 3x–1=8 | | x+9(x^-1)=-10 | | P+9(p^-1)=-10 | | 16(x+6)=30(2x-4) | | (x3)2/x4=144 | | 1/4x+6=17 | | .5(8x-12)=3x+4 | | 2(x+5)-8x=3(x+2)+x | | a+2÷5=3 | | 3/100=100/x | | P=5x+(5x-3)+5x+(5x-3) | | ×^2-14=5x | | 6x+4-2x+3=8x+1-x+8 | | 7b+4-b-5-9b=4b-3-b+20 | | 10t-4=7t+8 | | F(x)=x^2-27 | | x^2+25x-1176=0 | | 625-50x=175 |